- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0001000000000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Apel, E (1)
-
Brandt, R (1)
-
Campbell, J (1)
-
Casson, P (1)
-
Green, M (1)
-
Hills, A (1)
-
Hornbrook, R (1)
-
Kelting, D (1)
-
Lance, S (1)
-
Lawrence, C (1)
-
McDowell, B (1)
-
Murphy, D (1)
-
Murray, G (1)
-
Shanley, J (1)
-
Shattuck, M (1)
-
Synder, P (1)
-
Tripathy, A (1)
-
Wymore, A (1)
-
Yerger, E (1)
-
#Tyler Phillips, Kenneth E. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Organic carbon (OC) is a highly diverse class of compounds that represents a small but critical fraction of the atmosphere’s chemical composition. Volatile organic compounds (VOCs), when combined with nitrogen oxides (NOx), can produce tropospheric ozone (O3), a regulated air pollutant. OC also represents a large and growing fraction of aerosol mass, either through direct emissions from sources like fossil combustion and biomass burning, or through secondary chemistry by the oxidation and subsequent reduction of vapor pressure of VOCs leading to condensational growth. Clouds droplets and precipitation can contain additional OC due to the dissolution of soluble organic gases to the aqueous phase. OC has abundantly been found in aqueous samples of clouds, fog, and precipitation, exposing these compounds to unique aqueous chemical reactions and wet deposition. However, the concentrations and controlling factors of atmospheric aqueous organic carbon remain highly unconstrained. Cloud water measurements at Whiteface Mountain in the Adirondack Mountains in upstate New York have revealed an increasing trend of Total Organic Carbon (TOC), with annual median concentrations doubling in 14 years, possibly signaling a growing trend in atmospheric OC. However, the causes and potential consequences of this trend remain unclear. Another question that has yet to be explored is if this trend in OC extends beyond WFM. To answer this question, this work explores the trends of WFM cloud water and 4 additional long-term cloud water and wet deposition datasets that have measured TOC or dissolved OC (DOC) throughout the Northeast US. These sites include Mt Washington, NH, Hubbard Brook NH, Thompson Farm NH, and Sleepers River Vermont. This work will also discuss potential hypotheses driving this increasing trend including increased biomass burning influence and increased biogenic emissions in the region.more » « lessFree, publicly-accessible full text available November 6, 2025
An official website of the United States government
